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Abstract

A formation of satellites flying in deep space can be specified in terms of
the relative satellite positions and absolute satellite orientations. The
redundancy in the relative position specification generates a family of control
topologies with equivalent stability and reference tracking performance. This
paper gives a characterization of the equivalent topologies and uses this
approach to show that there exists a control topology which achieves a global
tracking objective using only local controllers. This is referred to as a local
relative topology and can be implemented without requiring communication
between the spacecraft in the formation.

1 Introduction

The collective behavior of spacecraft flying in formation can be used to synthesize
instruments of greater utility than could otherwise be achieved with a single
spacecraft. One example—which motivates much of our work—is an interferometric
imaging system composed of multiple spacecraft. Preliminary work on orbiting
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Figure 1: Interferometric imaging configuration using multiple spacecraft in forma-
tion. Spacecraft separations are of the order of tens to hundreds of meters.

interferometers can be found in [1, 2, 3]. Several interferometric flight projects,
using formation flying, have been proposed and studied including LISA [4],
Terrestrial Planet Finder (TPF) [5] and Starlight (formerly ST-3) [6].

We use the interferometric imaging application as a basis for discussing formation
control problems which are applicable to a wider range of problems. Figure 1
illustrates a conceptual interferometric imaging configuration.

Each spacecraft acts as a collector, reflecting light from the imaging source to a
combiner spacecraft. The light from any two collectors is combined at a detector
and, if the optical pathlengths are held fixed, an interference pattern can be
measured. Each measurement of the amplitude and phase of this pattern amounts
to a sample of the spatial Fourier transform of the image. Multiple measurements,
using either multiple collectors simultaneously or repositioning fewer collectors,
gives sufficient data to allow reconstruction of the image. The advantage of imaging
in this way is that the effective aperture depends on the collector separation. Future



objectives call for separations of the order of kilometers, giving resolutions that
cannot be matched by any individual spaceborne telescope. Multiple collectors can
also be used to create nulls in the spatial response of the array thereby enabling the
imaging of dim objects adjacent to bright ones. This is a promising technology for
searching for planetary objects in other solar systems. There are many contributions
in the literature on interferometric imaging; see [7] for illustrative examples.

Formation control problems—initialization, reorientation, resizing, tracking, station
keeping, etc.—can specified in terms of the tracking of relative spacecraft position
and spacecraft attitude. The complete control problem is likely to be heirarchical,
with a supervisory controller specifying the required formation during maneuvers or
science data collection.

In interferometric applications the control actuation will also be hierarchical. The
tight constraint on the optical path length is achieved by controlling the spacecraft
position to the order of tens of micrometers. Each spacecraft will have the optical
components mounted on a movable platform, which can be positioned to the order
of micrometers or less. The individual mirrors themselves are mounted on precision
piezoelectric actuators which in turn can be controlled to the order of tens of
nanometers. This is the requirement in order to generate interference patterns
between the optical beams.

The range of operation, and the bandwidth, of each of these actuation systems varies
widely. The actuator allocation design will depend on the specific details of the
configuration. In this paper we consider only generic actuation, and assume that the
control system is able to exert a force suitable for positioning in three dimensions.
Our emphasis is on the control topology at the level of communication between the
spacecraft, rather than the nested actuation heirarchy within a spacecraft.

Our work focuses on deep space missions, where the formation is in heliocentric
orbit rather than earth orbit. The analysis results we present are quite general;
however in applying them to our formation flying problem we make some specific
assumptions. The most significant of these is that the spacecraft can sense their
relative position and not their absolute position.

The spacecraft in the formation are free flying and their dynamics are coupled only
through the application objectives and relative measurements of the spacecraft
positions and velocities. To maintain the performance of the formation, in deep



space missions, it is necessary to maintain the relative position and absolute
orientation of the spacecraft. Actuation for control purposes is performed on the
individual spacecraft.

There are many possible topologies for the sensing, control, and communication
within the formation. Communication bandwidths, synchronization constraints, and
sensor capabilities affect the performance of any chosen topology. These issues have
been studied; see, for example, [8, 9, 10, 11, 12, 13, 14, 15] for work on
leader/follower and other topologies, and [16] on estimation configurations.

We can speak of centralized or decentralized topologies for both the control design
and implementation. A centralized—or global—control design topology is one in
which the actuation is calculated from information or measurements of all formation
variables. A decentralized design implies that the control actuation for each
spacecraft depends only on a subset of the formation variables. Decentralization is a
matter of degree, and can be used to trade-off between formation performance and
controller/communcation complexity. See [17] and the references therein for a
discussion of decentralized control is spacecraft formations.

Centralized or decentralized topologies may also be considered in the
implementation. In a centralized implementation all measurements would be sent to
a single spacecraft, the required actuation calculated, and then communicated back
to the individual formation members. An equivalent controller can also be
implemented by having each spacecraft maintain a copy of that part of the
controller which generates its actuation. Measurement information is then
transmitted through the formation for use by the individual controllers.

Communication bandwidth and synchronization constraints make it advantageous
to reduce the communication of time critical information required between
spacecraft. In this context we consider the following problem. Is there an
implementation topology which allows a centralized/global control design topology
to be implemented with a minimum of communciation between the spacecraft? We
develop tools which allow this problem to be addressed, and use these to show that
there exists an implementation topology for global/centralized control designs that
requires no communication between spacecraft. Only local measurements are
required for the implmentation, which makes the approach suitable for small to
medium formations (3 to 6 spacecraft).
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Figure 2: Spacecraft formation: the local and relative position variables are shown.

2 Formation definition and sensing

We begin by considering a typical formation and defining the notation associated
with the various local and relative position and attitude variables. Consider a
formation of N spacecraft, and for simplicity it is sufficient here to define on each a
reference attitude, ¢;, ¢ = 1,..., N, with respect to an inertially fixed direction, ¢res.
Figure 2 illustrates these definitions.

We define a local inertial frame within which each spacecraft is located at position
Pi = [2i,Ys, 2] (the prime denotes transpose). The origin of this frame is not critical
for the application we consider here. The relative position between each two
spacecraft is defined as,

Z; Z;
Tig=Pi—Pi= Y |—|¥% |, %5=1,...,N, i#j.
Zj Z5

Naturally, r;; = —r;;, and in an N spacecraft formation there are N(N — 1)/2



relative three dimensional distances that can be defined modulo the opposite
direction equivalences.

In deep space, an accurate measurement of (x;, y;, z;) is not available. It may be
possible to obtain range and direction information with respect to Earth, but this
will be accurate only to the order of meters.

On the other hand, the r; ; variables can be precisely measured. The Autonomous
Formation Flying Sensor (AFF) [18] uses a GPS based architecture with several
transmitters and receivers mounted on each spacecraft, to give relative position
measurements to 310 mm, relative velocity measurements to 0.1 mm/sec. Laser
metrology can be used to give relative measurements accurate to 10 nm or better.

In constrast to the absolute position, spacecraft attitude can be measured to very
high accuracy. On-board star trackers are typically used to provide attitude
information for each spacecraft, and these have a typical accuracy of

+10 milliarcseconds (mas). Higher quality star trackers can provide an accuracy of
less than +1 mas.

The formation is defined by the relative spacecraft positions and the attitude of
each,

Tij @ 4L,ji=1,...,N, i#]
¢i : ’Lzl,,N

Accurate measurements of the above formation variables are available; an accurate
measurement of the absolute location of the formation is not.

Note that there is some redundancy in the above as the N(N — 1)/2 relative
positions are not independent. We will exploit this redundancy in looking for
control topologies that do not require all relative positions to be measured.

3 Formation control

Consider the global reference tracking/disturbance rejection control design problem
illustrated in Figure 3. The dynamics of the formation are modeled in P where
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Figure 3: Control design formulation for formation reference tracking. Reference
commands are denoted by cr, ;,cy, and errors are denoted by e, ;,e4
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there inputs, u;, the commanded thrusts for each spacecraft. The measurements are
the formation variables, r; ; and ¢;. System disturbances are modeled here by dr, ;5
dg,;, adding directly to the formation variables. The analysis results given below
apply equally to the case where the relative velocities, 7; ;, are also measured, but
these are neglected for notational simplicity.

Global control problems, such as that specified above, are readily handled by
existing optimal control theory and supported by analysis and synthesis software.
For example, K above may have been designed to meeting an Ho, or Hy/LQG
objective for the formation.

3.1 Attitude control

The formation specification includes the attitude of each spacecraft, ¢;, with respect
to a fixed intertial attitude. Because the formation dynamics are coupled only
through the control objective, attitude errors, q;i, on each spacecraft are not coupled
to attitude errors on the other spacecraft.

In the deep space mission application, each spacecraft is also assumed to have a
local measurement of its attitude. This means that correcting attitude errors is a
strictly local control problem: only local measurements are required to determine qu,
and only local actuation is required to attentuate the attitude error. Control of ¢; is



therefore decentralized, both in terms of design and implementation. For this reason
we drop control of ¢; from further consideration and focus on the more difficult
problem of the control of r; ;.

3.2 Relative position control

The full set of relative position measurements contain redundancies that can be
expressed as algebraic constraints. For example,

Tij + ik + Thi = 0.

For the formation to be well defined these constraints must also apply to the
relative position commands, c,, ;. Note that they therefore also apply to the errors

and disturbances, e, ,, d., ;.

Express this constraint in the form,

T,2 1 -1 I 0 -+ 0 "
71,3 _C P2y - 0o I -0 P2
TN-1,N PN o - -I I PN

The matrix C € R3VWV-1/23N "and in a state-space representation may actually be
a submatrix of the state to output matrix. It has rank 3(N — 1) which means that it
has a 3(N — 1)(N — 2)/2 dimension null space. There exists a matrix,

M € RININ-1/2x3(N-1)(N-2)/2 gatisfying.

N-1,N

or equivalently, M’'Pu = 0 for all u. This is a convenient method of expressing the
algebraic reduncancies in the relative position measurements.
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4 Equivalent topologies

We will use the redundancy characterized above to define a class of transformation
matrices which will have the effect of removing specified relative measurements from
the controller. This class of transformation matrices is defined by,

H=1-XM,
where X € R3NW-1)/2x3(N-1)(N-2)/2 31 gatisfies,
MX =1

Tedious algebra shows that this has the effect of expressing some of the relative
position measurements as linear combinations of the others.

To clarify this we give a three spacecraft example. In this case,

7“1’2 -1 I 0 1
13 = | 0 I P2
72,3 0 —I I P3

Amongst three spacecraft there are only two independent relative positions and this
can expressed as,

Ti2
!
Ml 7"1’3 = 0,
72,3

where M; = [ I -1 1 / is one choice. Now select X; = [ I 00 ]I and note
that M]X; = I. The transformation matrix, Hy, is given by,

01 —I
H=I-XM=|01 0|,
00 I



and this gives,

r1i,3—T723 1,2
1,3 = Hj 1,3
2,3 72,3

Note that r; 5 has explicitly been removed. This effect can be seen more clearly
when we consider K H; for some controller K designed to use all three relative

measurements,
U Ky Ky Kis 1,2
up | = | Ko Kp Koz 71,3
Us K3 Kz Kss 2.3

Define K = K H; and consider the control action generated,

U1 | T2
U9 = K 7"1,3
Uus 23

[0 K+ Kizs —Ku+ Kis 71,2
= 0 Ko+ Ky —Ko+ Ko 71,3
| 0 Ks + Kjp —Ks + K 72,3

[ K+ K —Kij+ K r
= Ky + Ky —Ko + Ko [ 1’3}

T
| K31+ K3z —Kg + K3 23

The transformation, Hi, has the effect of removing the measurement r; 5 from the
controller. There are other obvious choices for X; which would remove one of the
other relative position measurements. The method is independent of the null space
characterization, M;. A different M; would simply require a different X; to achieve

the same result.

It is not true that K H; = K. However the next section will show that K H has the
same stability and tracking performance properties as the global controller K.
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5 Stability and performance analysis

Before proceeding we will extend our class of transformations slightly. Partition the
identity into g block diagonal pieces via,

Now define the transformed controller via,
) g
K = Z E;KH;,
i=1

where the H; are transformations of the form, H; = I — X;M/. This has the effect of
grouping the controller outputs into ¢ disjoint groups, and applying a different input
transformation, H;, to each.

Lemma 1 Given a full rank matrices, M; satisfying M]P = 0, and matrices X,
1=1,...,q, satisfying M/ X, = I, define, H; = I — X;M]. Define q matrices E; such
that,

satisfies

i) Ky = Ky for all y satisfying My=0,i=1,...,q.
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i) KP=KP.

Proof: To begin note that Hyy = (I — X;M])y = y. Part i) is shown as follows:

Ky= (zq: EiKHi> y = (i E> Ky =Ky.

Part 43) now follows from observing that for all y generated by y = Pu, satisfies
Mly=0,i=1,...,q. ]

It is interesting to note that the E; can be more general than disjoint partitions of
the identity.

Because KP = K P the signals that go around the loop are the same for both
controllers. This is the basis of the stability equivalence proven below.

Theorem 2 (Stability) Given a full rank matrices, M; satisfying M{P = 0, and
matrices X;, i = 1,...,q, satisfying M{ X; = I, define, H; = I — X;M]. Define q
matrices E; such that,

Given a stable linear controller, K, that internally stabilizes the linear plant P, then

q
K =Y EKH,

=1

also internally stabilizes P.

Proof: The internal stability of the (P,K) loop is equivalent to the input/output
stability of the mappings:
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i) ({+PK)'P i) (I + PK)"'PK
wi) (I+KP)"'K w) (I + KP)™!

We now show the stability each of these relationships with K in place of K. Part i)
is the plant input disturbance to plant output mapping. For all plant input
disturbances, z, the plant output satisfies My = 0 (by assumption), and

y=(I+PK)'Pz or, equivalently, Pz = (I+ PK)y.

From Lemma 1, K y = Ky and so y also satisfies Px = (I + PK)y, which is a stable
mapping by assumption. To prove Part 43) note that,

Y= (I+Pk)"1ka =z — (I+PIA()_1x.

It is sufficient to show that the second term—the output disturbance response of the
plant—is stable. This must satisfy, M!y = 0 and

7

z = (I+PK)y=(I+PK)y, by Lemma 1, part 1),

which is again stable by assumption.

We now consider part ) which follows by noting that (I + KP)™' = (I + KP)~!
(via Lemma 1, part i1)).

Part 4ii) is the mapping with signals z and v satisfying,
(I+KPu=Kz or, equivalently,(/ + K P)u = Kz.

Note K is an open-loop linear combination of stable transformations,AHi, and
partitions of K. The stability of K therefore implies the stability of K. Therefore
% := Kz is bounded, and part 7v) result implies the stability of part 4). [

The restriction to stable controllers can be relaxed; as stated it addresses the most
practically applicable case.
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Although the signals going around the loop in each case are the same, the
performance transfer functions may differ as PK # PK for all possible inputs to K.
In the formation flying case, we may assume that the commanded relative positions
specify a feasible formation, which allows us to prove equivalence in reference
tracking performance between the two controllers.

Theorem 3 (Performance) Given a full rank matrices, M; satisfying M!P = 0,
and matrices X;, 1 =1,...,q, satisfying M{X; = I, define, H; = I — X;M]. Define q
matrices E; such that,

Given a stable, internally stabilizing controller, K, define

q
K=Y EKH,

i=1
For all reference inputs satisfying Mc, = 0,

y= I+ PK)'PKc, = (I + PK)"'PKc,.

Proof: Note thaj: Mjc, = 0 implies that for all H;, H;c, = ¢,. Consider the plant
output, y, with K in the loop.

y= (I + PK)'PKc,,
which implies that y satisfies,
(I + PK)y = PKc,.

By Lemma 1, part i) y and ¢, also satisfy, (I + PK)y = PKc,. |
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We have parametrized a set of controllers, K, which have equivalent stability and
tracking performance to a given global controller, K, using a characterization of the
output null space. We note that we can develop a completely analogous theory
based on an input null space characterization of the plant. In the formation flying
application the input null space is of dimension three and this choice does not allow
as much flexibility in zeroing out controller elements.

6 Local relative control topology

The analysis tools of the previous section can be used to illustrate the existence of a
particularly interesting topology for formation flying. We define this as follows.

Definition 4 A control topology in which all actuation signals depend only on
relative measurements with respect to the actuation location is termed a local relative
control topology.

In our application this topology means that all control calculations can be
performed locally, based only on local relative measurements. In other words, the
calculation of the actuation, u;, depends only on r;;, j =1,...,N, j #i. It does
not depend on 7, ; when k 5 ¢ and j # ¢. This topology can be implemented
without any communication between the spacecraft. We now give the main result.

Theorem 5 Given a global control topology with a stable controller, K, with inputs
being all relative position measurements, there exists a stabilizing local relative
control topology, with stable controller K , which has equivalent relative position
tracking performance.

Proof: We demonstrate this by constructing the local relative controller for
spacecraft #1. The first 3(V — 1) elements of the measurement vector are the
spacecraft #1 relative measurements, 7y ,...,7 5. There are 3(N — 2)(N — 1)
measurements which are not relative to spacecraft #1 and each of these satisfies,

Tk + 71,5 + Tik = 0, j, k 7£ 1.
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Express these equations in matrix form,

@ 1] 7

2,3

1,2

L T.N"17N J

where Q € R3WV-2W-1)x3(N-1) Define M, = [ Q I ] and note that the identity
guarantees that M, is full rank. Now define,

X1=[?] andnotethatM{Xlz[Q I][

I

0]:[

Define H; = I — X1 M7, noting that M; and X, satisfy the conditions of Theorems 2
and 3. Consider the result of,

H]T:(I—I:?

Observe that H, has removed all measurements that are not relative to

Jie 1)

T1,2

",N
72,3

| "TN-1,N J

|

I 0
-Q 0

|

( 1,2 |

,N
2,3

. TN-1,N j

I J e

T1,N

spacecraft #1. Define the partition of the identity selecting the spacecraft #1

control outputs,

E1:
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Then E;K H, gives the local relative controller for spacecraft #1. The other
spacecraft relative controllers can be calculated similarly after reordering the relative
measurement vector. The theorem now follows directly from Theorems 2 and 3. =

By observing that the relative velocity measurements have the same null space as
the relative position measurements we can extend Theorem 5 as follows.

Corollary 6 Given a global control topology with a stable controller, K, with inputs
being all relative position and velocity measurements, there exists a stabilizing local
relative control topology, with stable controller K, which has equivalent relative
position and velocity tracking performance.

The local relative topology has implementation advantages. The most significant is
that it does not require measurement or state information to be communicated
between the spacecraft. This can remove the need to synchronize the spacecraft
timing at the control implementation level, and can remove one of the potential
bandwidth constraints in the formation control problem. Note that some
communication will still be required for supervisory tasks. In some hardware
implementations the distinction between relative measurements and
communications is not as unambiguous. For example the AFF [18] measuring
system is based on communication signals. Some communication may also be
required to initialize a laser ranging system between spacecraft.

It should be noted that this work addresses control topologies, and not estimation
topologies. While the tracking response of each topology is equivalent, the noise
response may not be. An estimator may derive additional benefit from non-local
measurements.

The local relative topology is best suited for implementation with a small number of
spacecraft. At some point the cost and complexity of a large number of relative
measurements outweighs the disadvantages of communicating measurements and
state variables between spacecraft.

The tools developed in proving the existence of the local relative topology are also
applicable to other topological studies, as the next section illustrates.
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7 Reconfiguration and other topologies

The characterization of the null space based transformations given here allows us to
study other topologies, and topological reconfigurations.

Several situations may arise where control topology must be reconfigured during
operation. Examples of this include failure of a sensing system and failure of a
communication link. In such cases one or more of the measurements, Tij, IS
unavailable for control. A transformation matrix, H;, can be calculated and applied
to the global controller to recalculate a new equivalent topology that does not use
the unavailable measurement. The new topology will, in general, require some
communication of between the spacecraft. While this is simple to calculate “by
hand”, the algebraic approach taken here allows for automatic recalculation in the
case where multiple measurements are unavailable. Notice also that controller
redesign is not required for this eventuality.

One important aspect of this is that the reconfiguration is algebraic rather than
dynamic and therefore does not have any transient dynamics associated with it. For
example, given two topologies, calculated by,

u1(t) = KHyy(t) and wuy(t) = KHoy(t),

then the controller outputs u(¢) = uy(t) for all ¢. This means that we can switch
between controllers K H; and K H, without a transient in u(¢). Note that if the
noise characteristics differ between the relative measurements then reconfiguration
may change the formation noise response. It does not change the reference tracking
characteristics.

Reconfiguration may be required as a result of the formation pattern itself.
Consider the formation illustrated in Figure 4, where several spacecraft are aligned.
If both the communication and relative sensing require line-of-sight contact the local
relative topology cannot be implemented when the spacecraft move into this
formation.

In this configuration only spacecraft #1 and #3 can implement local relative
control. Under our assumptions ry 4 cannot be measured from spacecraft #2.
However, we can use to above analysis to show that it is sufficient for either

18
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Figure 4: An example formation with spacecraft shadowing preventing full relative
measurements.

spacecraft #1 to communicate r; 4 or spacecraft #3 to communicate 73 4 to
spacecraft #2. An analogous situation exists for spacecraft #4.

We can use this approach to study nested topologies containing a mixture of relative
measurements and communication. An example of this is illustrated in Figure 5.
The highlighted spacecraft can execute its portion of the global control algorithm,
without loss of formation tracking performance, if the relative measurements shown
are communicated to it.

Clearly, there are many specific topological problems that can be considered in such
formations and the work presented here provides tools for calculating equivalent
topologies.

8 Conclusions

The techniques developed here exploit the redundancy in the plant measurement
space to characterize controllers of different topologies with equivalent tracking and
stability properties. The results are general, and are applied to study relative
measurement configurations in formation flying spacecraft. In this case we have
shown that there exists a local relative control topology which can be implemented

19



spacecraft #i

Figure 5: A nested topology. Spacecraft #:¢ (highlighted) can execute an equivalent
global algorithm based on the relative measurements shown.

using only local measurements on each spacecraft. The equivalence to a global
controller means that more sophisticated global control design methods can be used,
and then transformed into various equivalent topologies.

The controllers are equivalent from a reference tracking perspective. Their noise
responses are not identical, and if the measurements are constructed by estimation
techniques then the estimation topology may be different from the control topology.
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